Vorshlag 2002 BMW E46 325Ci - Daily/Track Car - Project Jack Daniels

Discussion in 'Vorshlag Motorsports' started by Vorshlag-Fair, Sep 11, 2015.

  1. Vorshlag-Fair

    Vorshlag-Fair Official Site Vendor Official Vendor

    1,393
    51
    continued from above

    REPLACING A FRONT FENDER

    This should be an easy one, but I re-learned a lesson here. The left front fender was smashed when we got this rolling chassis for a song - not a big deal, as I keep a couple of pairs of front E46 steel fenders in stock to use for metal flare jobs on E36 chassis (for before - when there were not good flare options). But it had been a number of years since I had bought these fenders...

    [​IMG][​IMG]

    Again, we haven't done a steel E36 flare job like this in years - because there are so many good flares and widebody options for the E36 now. The E46 is no different, as I will show below. But I had forgotten that we utilized E46 non-M SEDAN front fenders for our E36 flare jobs. It came down to the recessed trim section in the sedan fenders was further back and "out of the flare" section. That made the welded steel flare jobs on E36 cars easier. We would cut out the fender flare portion of these E46 fenders then graft them to the E36 (see above right). It was a bunch of work but could turn out nice with a little bodywork and paint.

    [​IMG][​IMG]

    So when the smashed coupe fender was removed, I grabbed one of these SEDAN fenders, not remembering it wasn't a COUPE front fender. It was on the car for a couple of months - because with the front nose and left side door off it wasn't obvious it was the wrong one. If you look at this fender installed, above right, you will notice the body lines from the A-pillar don't match up - that's all that was visible... So when we test fit the Extreme Dimensions flares (shown further below) it "didn't fit".

    [​IMG][​IMG]

    Again - a weird mistake, and it would have been immediately evident if the door was installed. Luckily replacement coupe fenders are still cheap for these cars and I found some for $58 shipped. I used to pay closer to $33 for these import fenders from a local Certifit store, but that's a 3 hour round trip in traffic to save maybe $20. This is one of the few things eBay is good for - cheap used parts or import body parts. Probably won't be the last fender we will need on an endurance car, hehe.

    MOUNTING THE NOSE + TUBULAR BUMPER BEAM

    We aren't 100% done with this step but I will show some progress. The "M3 style" front bumper cover is an import unit designed for use on a Non-M coupe chassis. This is often used by Spec E46 users, and we will utilize this item for the better grill openings and flatter bottom - which makes adding a splitter easier.

    [​IMG][​IMG]

    At this point we have the bumper cover mocked up - we needed that for the flare fitment tests. The factory plastic brackets at the tub are holding the receiving "cups" on the bumper cover, with the weight held up by a bucket for now. The cover needs a bumper beam to mount to, with brackets to hold it in place. We plan to have a rolled radiator that is feeding the radiator from the lower grill opening only. to make room for that a tubular bumper beam is a trick we often use to make more room. Here's an example of what we have planned, which we built this year for my wife's LS swapped 86...

    TUBULAR BUMPER BEAM ON 86

    We almost always start with our tubing roller (below left), install the appropriate dies, and then pick a piece of 1.50 x .095" wall, 1.75" x .095" wall or 1.75 x .120" wall seamless DOM tubing. We cut this to length and then bend the main curve to match the bumper cover.

    [​IMG][​IMG]

    On this car we were using a carbon fiber aftermarket nose, which had both a curve and needed two bends to kick in for the portions outside of the radiator. Some folks will stop their tubular bash bar at the frame rails, like most OEM beams do. We have seen car-to-car contact rip bumper covers off, destroy headlights, and more. With our full width bumper beams on other cars we have seen our customers "come out on top" of any contact.
    [​IMG][​IMG]

    Above left you can see how closely this tubular bumper beam matches the shape of the nose we are using - again, necessitating a couple of bends to kick in outside of the frame rails and under the headlights. This FULL WIDTH beam is much stronger and protective than the "half bumpers" we see some build. The mounting plates are cut on our CNC plasma table then the bar is mocked up underneath the bumper cover to figure out the lengths for the tubing mounts. These are fish mouthed and added to the mounting plates and beam. It is all tacked up on the car but finish TIG welded on the fab bench, above right.

    [​IMG][​IMG]

    These pictures above show the rolled radiator - its also only fed from the lower grill opening, and mounted way forward and down. This makes venting the hood much more effective, and we will do the same thing on our E46. The upper and lower radiator mounts will be custom made, of course. We may or may not make a duct box to the hood opening behind the radiator, but we will definitely make the lower grill opening ducted to the front side of the radiator and oil cooler.

    [​IMG]

    This is as far as we've gotten. On our next weekly work night we should have this tubular beam welded to the mounting plates at the frame stubs, visible behind the bumper in the pic above. Then we will add twin tow hooks to the font, some simple brackets from the tube to the bumper cover, spec the radiator, and build brackets for the radiator and oil cooler. Much more on this task next time.


    FRONT SUSPENSION MOCK-UP

    We bought this car on very worn OEM struts, springs and "mushroomed" top mounts. After some initial work on one of our 2-post lifts this car was moved to a back corner of the shop for the next phase of work, and the OEM struts were tossed. They were total junk. We needed wheels on the car to test fit the fender flares and for our design work on the Brembo BBK, but the OEM stuff was so long that the ride heights would be totally wack.

    [​IMG][​IMG]

    Luckily we had an extra Ohlins E46 coilover strut so we found a coilover spring, added a Vorshlag camber plate, and mounted that to the left front. This is not likely our final suspension but close enough for mock-up testing.

    [​IMG][​IMG]

    One small downside to inverted struts is the spring and body lengths make it harder to fit "the spring above the tire", which limits how far inboard the wheel can fit. Not an issue with most wheel setups on these cars but "We're going to eleven". We need ALL of that room and more. We mounted one of my E46 17x10" Forgestar wheels and 10.2" wide Hoosiers for the next steps.

    continued below
     
  2. Vorshlag-Fair

    Vorshlag-Fair Official Site Vendor Official Vendor

    1,393
    51
    continued from above

    MORE DOOR LIGHTENING

    [​IMG][​IMG]

    In my last post I showed how we got the doors down to 29.0 pounds with some serious cutting, gutting, and removal of the window glass and associated mechanisms. We used a variety of cutting tools to get this structure out - including the plasma cutter and some cut off wheels in a pneumatic die grinder. Both methods are loud, noisy, and messy. Plasma cutter is probably the worst way to do this work, as it leaves a super rough edge that we then had to grind or cut away.

    [​IMG][​IMG]

    We foolishly forgot to weigh the full weight doors with glass so I don't have a good starting point to reference - but this 29.0 pound weight still seemed heavy for a gutted door, to me. Something didn't "feel" right about that weight. A buddy of mine (Andy) owns Clownshoe Motorsports and said his doors were lighter, so I stopped by their shop one Saturday.

    [​IMG][​IMG]

    I can't show many of the endurance racing secrets he shared with me that day, but we did measure some various tires, and noted the technique he uses to gut doors. They leave more of the upper structure but remove ALL of the lower structure, and much of the door striker bits. So we took our 29.0 pound doors and went to town on our next work night.

    [​IMG][​IMG]

    Tim and Jason got to work with the Saws-all and it proved to be a more efficient, less messy tool for cutting the door structures. Leaves a much cleaner edge, too. We cut off the ugly edge left by the plasma cutter and then started to work on the metal below the latch plate.

    [​IMG][​IMG]

    I then used some extreme care with the cut off wheel and took the upper "crash structure" out at the top of the door, on the inside. The slotted, 3D shape shown in the picture above left. We took this out of the passenger door, and it is heavy. All told we found another 2.1 pounds, which isn't a lot. We had already taken the main crash beam, glass, and regulator out of the door. We were starting to hit a big "diminishing return" type of task.

    [​IMG][​IMG]

    Tim suggested we KEEP the upper structure on the driver's door (shown with a red box around it, above left). He crews for two different pro level road race teams that have driver changes, and he has noticed that they tend to lean on the upper part of the door during stops. So we left that in the left door, and it is only 1.1 pounds heavier at 28.0 lbs (above left). This door was weighed after cutting some of the inner structure out and with the window + regulator removed, but the diagonal "crash beam" in place at 34.7 pounds (above right).

    [​IMG]

    I made sure we weighed the full weight door (above right) on our 2015 Mustang road race project, which is going on a SERIOUS diet and getting an LS swap. 84.2 pounds for a door is extreme, but keep that in mind when you are gutting your door. We might find another pound in these BMW doors, but we have kept structure at the hinges, striker latch, side mirror mount and along the top of the driver's door. Any additional weight removed is going to make the remaining door compromised... I think we are there.

    continued below
     
  3. Vorshlag-Fair

    Vorshlag-Fair Official Site Vendor Official Vendor

    1,393
    51
    continued from above

    BREMBO E46 BIG BRAKE KIT

    I teased this last time, and I'm not going to share everything now - because this brake kit is currently untested. We could have just bolted on E46 330 brakes, which are an 1" larger in diameter from the base 325/318/328 brakes, as shown below. We've done this cheap upgrade on a number of 325/328 cars before. But this car is going to be in WRL GTO class (more on that below), with V8 power and 315mm tires... it needs MORE BRAKES.

    [​IMG][​IMG]

    We started developing this swap kit last June and tested 6 different rotors and a few calipers. I bought a number of rotors, including the E46 M3 325x28mm, the ZCP competition M3 2-piece rotor which is 345x28mm (and $$$), and some other rotors. We mocked up the Powerbrake caliper on a number of these but the prices start ti get extreme if we use that caliper.

    [​IMG][​IMG]

    We kept coming back to a particular Brembo 4-piston caliper, which we have a lot of experience with. This is not a radial mount Brembo like the Porsche calipers some BBKs are based on. Those Porsche calipers need to be machined and still require a somewhat expensive caliper + core to work.

    [​IMG][​IMG]

    We attempted to use this with the E46 M3 rotors but the spacing for the Brembo, but with the somewhat "small" diameter 12.8" E46 M3 rotor, the spindle mount spacing just didn't work well for this caliper's mounts. And honestly we wanted a bigger rotor for endurance racing - which is where we see this kit working well, as the E46 is a popular endurance race car chassis. We actually made a bracket to where this Brembo to this M3 rotor but the caliper had to scoot "up" enough that part of the pad sat above the rotor. That's going to make the pads wear poorly so we abandoned this M3 rotor. Shame.

    [​IMG][​IMG]

    Next we tested a number of larger non-BMW rotors with the same 5x120mm bolt patterns, including this 1-piece 13.6" (345mm) above left and a 1-piece 14.0" (355mm) rotor above right. Even though we would be going to an 18" diameter wheel for our car, we knew many endurance E46 racers wanted to stick with 17" wheels, so we used our 17x10" Forgestar as the "go / no go" gauge for our brake fitment testing. We even tried a 14.5" rotor but it was too tight for safe use inside this 17" wheel.

    [​IMG][​IMG]

    The best fit for the 4 piston Brembo caliper on the E46 non-M spindle was on the 14.0" diameter rotor (355mm x 32mm), which is a monster. It had the right bolt pattern but we had to slightly re-machine the opening to fit over the BMW hub. Myles used our CNC lathe to make this cut and it worked perfectly. This rotor weighed 24.0 pounds before we machined the hub and chamfer. Very cost effective.

    [​IMG][​IMG]

    I am not showing our E46 mounting bracket just yet - we made prototype brackets that bolt-on without mods, but they aren't production quality looking yet. Once we get some laps on this brake setup, and if they work as well as they should, we will sell this as a kit (rotor, caliper, bracket and hose). Gives us BIG brakes, affordable calipers and rotors, with a massive pad selection. Fits within some 17" and all 18" wheels. Stay tuned for more.

    DURAFLEX E46 M3 WIDEBODY KIT

    I teased this last time as the widebody kit had just arrived but we hadn't mocked it up well yet. We needed the bumper cover, left door, a wheel and suspension, and the correct left fender mounted to test flares these completely. All of those other other steps have been completed so now we could finally test fit these bits properly at all 4 corners.

    [​IMG][​IMG]
    We were excited to try a widebody kit that we could buy for so little. This looked good for both clearance and minimal drag. The aero of a fender or flare matters, especially when you are bombing down the back straight at COTA going 150+ mph. We found out later that the images used by Duraflex on their website are only 3D renderings, and even those are from a competitor.

    [​IMG][​IMG]

    We got the kit that we ordered (we are a dealer) and the fit and finish was pretty good - we have used a number of items from this brand and quality can be a bit "all over the place", but this was one of the better fitting setups. We spent several weeks rounding up a LF fender, mounting the nose and hood, getting the driver's door on, and mounting the suspension/wheel/tire/brakes - before we could mock these up properly.

    [​IMG][​IMG]

    These are made to work with the M3 nose and M3 lower skirts, so we had a gap at the bottom where the skirt was supposed to be. But we have some M3 skirts laying around, that won't be a big issue. The fronts and rears both fit surprisingly well. The rear had plenty of tire clearance...

    [​IMG][​IMG]

    ...but the front will only clear a 275mm tire. That's the problem with looking at the drift or stance communities for flare options - they never run a lot of actual tire WIDTH, just going for the stance or a tire that makes lots of smoke.

    WIDEBODY KIT FOR SALE!

    These flares won't fit over our 18x11" wheels up front, but for a racer or team running a 275mm tire on a 10" wheel, this should be ideal. Interested? We'd sell this whole kit at a loss for $400 shipped - call us at the shop if you want this set. Only mocked up, never drilled or bolted on.

    continued below
     
  4. Vorshlag-Fair

    Vorshlag-Fair Official Site Vendor Official Vendor

    1,393
    51
    continued from above

    ORDERING A CAGE KIT

    Many of you know that Vorshlag is known for making higher end roll cages in road race cars. But if you have read this post titled "we make roll cages" you might realize that our cages cost a bit of money. Because they take a long time to plan, prep, bend, notch, fit, and weld. 60-75 hours is normal for a car like this.

    [​IMG]

    Spending 75 hours building a cage from scratch - after hours and in our free time - could takes several months to complete. We tried to shortcut this time by ordering a "cage kit" from a reputable shop known for perfect fitting BMW cages. These are pictures of the kit built for our car, remotely, using another E46 coupe chassis to build within.

    [​IMG]

    Back in May the team voted on this option, and then paid for this E46 kit from Hanksville Hot rods. They build their kits inside the same chassis as you ordered - but it took longer than expected to round up an E46 coupe to use. And longer still to complete the kit. Stuff happens.

    [​IMG]

    This was an experiment to see how many hours we could save by ordering a kit and just doing the final welding here. It likely will save a 40+ hours of fab time, once it is complete and in the car, but our 6 month wait to get the kit built did nothing beneficial for our build's timeline. We had hoped to be on track in the Fall of 2019 but we are now pushing into Spring of 2020. We will show more of this kit being installed into our chassis next time, then many things staged behind this will follow.

    SEARCH FOR NEW FLARES - CLINCHED

    After the Duraflex kit proved to be too small up front for us we immediately started looking for an option that could clear our 18x11" wheel and 315/30/18 tire we will be using. Since 2017 "Clinched" has been making some stancey widebody kits and flares. They make a series of "universal" flares from thermo-plastic, which are formed on a vacuum table - a technique which we have used in the past.

    [​IMG]

    We had started to see these show up on legit road race and autocross cars with BIG wheels. A buddy had purchased a set of their "Euro" style flares with 100mm (4") widths. They worked to clear a 335mm tire on his Subaru track car (below left) and the same units on this CTS-V road race car looked pretty good. This style is made to be trimmed to fit, then bolted on.

    [​IMG][​IMG]

    We borrowed this 100mm Euro flare and mocked it up on both ends of our E46 coupe. They have more room than the front Duraflex widebody kit.

    [​IMG][​IMG]

    This won't be as clean of an install as the E46 specific widebody kit, but it will give us full coverage on the protruding part of each tire, and we can vent behind each tire by trimming the flares short on the back side. We became a Clinched dealer a month ago and ordered a set of flares this week for use on this car. We will show that installation work in a future post.

    GTO CLASS + BUILDING THE ENGINE

    We have been staying quiet about the engine, but it's Vorshlag - what did you think we'd build? Of course an LS swap is in order for our E46! Look how good an LS V8 fits under the hood of an E46...

    [​IMG][​IMG]

    An old prototype set of our stainless long tubes was rounded up, we built some mounts, have a brand new transmission which we will test (which I cannot talk about yet), have an E46 M3 rear subframe and diff to use, and more.

    [​IMG][​IMG]

    Once we agreed upon the class we wanted to run (GTO) then the engine we would use became obvious - an LS V8 engine.

    [​IMG]

    Even running the highest class in WRL (GTO) we are still limited to a fairly tame 9 pound per whp. And unlike NASA ST/TT classes, they calculate with no driver (but full of fuel). We need to know what the car will weigh then figure out how much power we can make...

    [​IMG][​IMG]

    We haven't done a W2W prepped E46 LS build yet, but we did build a caged E36 with a 427" LS engine and T56 Magnum before. This was our "Alpha" E36 LS build, which we raced from 2006 to 2009. Fully caged, with a fire system, aluminum LS, full exhaust, oil cooler, big radiator, Accusump, heavy 17x11" CCWs, all of the factory glass except the doors (which were gutted), and a single racing seat it tipped the scales at 2508 pounds, without fuel. The E46 chassis is a little bit heavier, plus it will have full aero + driver cooling system - so lets call it 2750 pounds full of fuel and race ready.

    2750 lbs / 9.0 = 305 whp

    This peak number of just over 300 makes a BMW M54 based engine out of the question. And yes, we could have built a higher strung S54 E46 M3 engine for this car, those aren't exactly inexpensive or known for massive reliability in endurance racing. Costs for an LS are much lower for us, and we are known for LS powered BMWs, which pushed us to an aluminum LS. We could make this with the smallest displacement 4.8L truck engine, or easily with a stock 5.3L. But we are going to "overshoot" our power goals, then dial it back with a using a custom "flat tune" by way of a factory Drive By Wire (DBW) throttle body. You could do the same thing with a physical restrictor in front of the throttle body, too.

    continued below
     
  5. Vorshlag-Fair

    Vorshlag-Fair Official Site Vendor Official Vendor

    1,393
    51
    continued from above

    SOURCING THE CYLINDER HEADS

    We had just pulled a 5.3L LS based iron block engine from the dead carcass of my old shop truck, a 1999 GMC Sierra 1500, #TruckNorris. This truck was smashed into while I was sitting in traffic by a 1 ton van going 60 mph. Destroyed my truck, bent the frame, shoved me into a parked truck and trailer also stopped in traffic ahead of me. Don't text and drive, kids!

    [​IMG][​IMG]

    That "LM7" series 5.3L is still an LS based engine, and the "706" castings are a small-valve "cathedral port" aluminum head. This article describes the 706 heads pretty well. They are probably some of the worst performing factory aluminum LS heads out there, but we can still make them work well enough to easily exceed 305 whp - and beyond. This is part of a test...

    [​IMG][​IMG]

    Erik at Horsepower-Research (HPR, where I am one of the managing partners) is helping us build this car, and will co-drive in endurance races. He disassembled these heads, then we cleaned them up in the aqueous parts washer before running them for about 15 minutes in the Ultrasonic parts cleaner. The flat stone shown above right was used to knock some of the carbon deposits off the block surface, as well as check for flatness. The heads checked out great even after 273K miles of truck use. The ports still had some carbon but the CNC work will take all of that out.

    [​IMG]

    Most of the valvetrain will not be re-used, and the now bare castings have been sent off to a head porter we use for a "single pass" CNC port program. These will be assembled with steel (not titanium) valves, for our fairly modest power goal. HPR is known for BIG displacement LS engines, but these heads will be a test for an LS engine we want to develop for more economical endurance racing use.

    THE INTAKE MANIFOLD

    The intake manifold we use for cathedral port heads - along with the camshaft - will determine where in the RPM range the engine will make the most power, and can unleash more on top with aftermarket designs like the Fast or MSD. We might cut the hood later, but we wanted to stick with a low profile "car" style LS intake to start with.

    [​IMG][​IMG]

    We cannot fit the taller Truck style LS intake (above left) under the hood of an E46, but they do make good power even with a smaller 75mm throttle body limitation. The 75mm mechanical throttle body versions of the LS1 and LS6 intakes are a bit snug to the E46 hood, but we made 490 whp on a 427" LS engine (above right) that was in our Alpha E36, back in 2008 - also built by Erik Koenig.

    [​IMG][​IMG]

    The other low profile cathedral port intake we can use is from the LS2. These use a 90mm DBW (Drive By Wire) throttle body, which is significantly larger than the LS1 or LS6 intakes' 75mm throttle body. The LS2 DBW throttle body setup is also much "shorter" (front to back) than the later LS6 Corvette DBW TB, and the 90mm LS2 style is very cost effective, too. We have seen a good power bump by going to ever larger throttle bodies... there is almost no limit of how big you can go. 102mm is common and we've seen our 468" LS engine pick up power at 105, 108, and even 112mm throttle bodies.

    I did a bit of research on the Dorman brand of replacement LS intake manifolds and this 615-901 "LS2" model with a 90mm TB opening was a real bargain. I hadn't seen much online about this new Nylon intake offering from Dorman so I bought one and we took a closer look. It arrived and looked pretty much just like an LS2 intake. This Dorman intake is only $215.99, and its brand new. A lot of the used LS2 intakes we see for sale have cracked bosses because they are all 10-14 years old. Plastic ages...

    [​IMG][​IMG]

    The Dorman 615-901 intake's casting looked pretty good except for two locations: There was a weird "protrusion" in one corner of the intake port near the cylinder head (above left), plus the throttle body opening had a lot of weird casting flaws and gaps (above right).

    [​IMG][​IMG]

    I had engine builder Erik take a look and he said he could fix the flaw in each of the 8 intake ports, then we could port then epoxy the small gaps at the throttle body area. At one of our Team work nights he used a long reach porting carbide cutter and smoothed out the protrusion.

    [​IMG][​IMG]

    We think this was a flaw in the internal casting dies - something shifted, and nobody bothered to fix it. Same goes for the throttle body section of the casting, where it meets the main plenum portion of the manifold. Just not a smooth transition there, lots of casting flash that had to be removed.

    [​IMG][​IMG]

    The part is even made in the USA, which is weird. Maybe Dorman will have this worked out at some point - just know this LS2 unit might need some work. He was done porting the intake ports and throttle body opening in about 90 minutes, and I cleaned the intake in the parts washer at HPR later that week.

    continued below
     
  6. Vorshlag-Fair

    Vorshlag-Fair Official Site Vendor Official Vendor

    1,393
    51
    continued from above

    THE BLOCK WORK

    We wanted to start with an aluminum LS block, as these are 80+ pounds lighter than the cheaper iron LS blocks. We could have sourced an aluminum 5.3L truck engine, which has a 3.780" bore. This is as small as any LS engine (4.8L is the same), and restricts the size of the intake and exhaust valves. So we looked for one of the 3.900" bore LS engines (LS1, LS6), which I happened to have. The 4.000" bore LS2 or 4.065" LS3 blocks would be even better, but those are more costly and I had a clean LS6 block I donated to the cause.

    [​IMG][​IMG]

    The block was equipped with the OEM 6-bolt main caps (they are worthless without mains!) and it was mounted to an engine stand to take those off.

    [​IMG][​IMG]

    Once you get the bolts out these mains are a bit tricky to remove cleanly. Erik has this custom set of main cap pullers one of his employees made years ago and I used it to pop the mains out out of the block. Each main was stamp marked before removal, of course. The thrust bearing is on the 3rd main, as shown in the middle of the block in the above left pic. The main bolts were kept but will likely be replaced with ARP studs.

    [​IMG][​IMG]

    We mounted the block to Erik's mill, which he has setup for block work. The goal was to clearance this block for a 4.00" stroke crank, up from the stock 3.622" stroke crank used in the 5.3L or the 5.7L LS6. If you want to do the math, it's easy:

    ((3.900" bore ^2) x Pi / 4) x 4.000" stroke x 8 cylinders = 382.3" or 6.3L

    This extra displacement only makes the engine more reliable at the power level we are targeting - as we can make more torque at lower RPMs with the added displacement. We do this "make it bigger" trick normally to make more total power, which it does. But on any engine, more RPMs = more problems, and on an endurance engine, we can make the same power goal at lower RPMs. We ran his crank clearance program for this LS6 block and a 4.0" stroke, which takes about 45 to 60 minutes. This is to allow the connecting rod to clear the bottom of the block's cylinder casting with the additional stroke.

    [​IMG][​IMG]

    Next up the block was mounted to the surfacer, and the decks were surfaced the bare minimum to make sure they were perfectly flat and square to the bore centerline. With less than .005" removed the block cleaned up perfectly. There are more steps - line hone, bearing checks cleaning - but I will show more of the shortblock work next time. And we have a second engine, an aluminum 5.3L, that we are setting up as a back-up engine as well.

    2004 330i ZHP

    Another customer tired of dealing with lots of little issues like CELs reached out to me this month and wanted to unload this Imola Red 6-speed ZHP sedan. It is out of inspection and registration, and the AC is blowing hot, so it's pretty much unsellable in Texas.

    [​IMG][​IMG]

    This is a one owner Texas car, however, and it has some tasty upgrades. A 3.64 geared limited slip diff, coilover suspension he bought from us over 10 years ago, 18x9" wheels, Michelin Pilot Sports, a Setrab oil cooler, and more.

    [​IMG][​IMG]

    With 162K miles, the AC system on the fritz, and these CEL issues it isn't worth a lot of money as it sits - and I don't want to fall into another "let's just find the issue and sell it" trap, as the risks of these being easy fixes are nil. We went and drove the car, however, and it is really nice. Super clean inside and out - this was owned by a BMWCCA member who cared for this car - until it became more of a burden than a joy to drive. I brought a trailer to tow it back home, since it had no plates.

    [​IMG][​IMG]

    Not really sure what we are going to do with this car - we take it to lunch on nice days and it gives me bad ideas. How about a nice daily driver with a 500 whp V8? I bought this E46 M3 rear subframe (and we have a 210mm LSD M3 diff) just in case we move forward with a swap.

    WHAT'S NEXT?

    That seems to be enough for this time, but we will have much more to show on the next update. We should have some progress to show on the Team Car ...

    [​IMG][​IMG]

    We have a few 210mm M3 LSDs and it is cheaper to use one of these than convert the medium case 188mm E46 non-M diff. So I donated an E46 M3 rear subframe (not the same one that I bought for the ZHP) for this E46 endurance car. This has had the bushings pressed out and bead blasted - next time we will show the reinforcements we are adding and the new bushings going in.

    [​IMG][​IMG]

    We will also show the sealed spherical bushing we installed in the RTAB location, which is pretty slick. Also the cage install, electric assist steering column, and more. Lots to do!

    Until next time...